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Abstract

Planning, reasoning, and sequential decision-making have played a pivotal role
in the development of Al systems. While Large Language Models (LLMs) have
demonstrated impressive capabilities, their evaluation for planning and Reasoning
about Action and Change (RAC) problems is performed using strict binary success
criteria, which limits information for further analysis and development. Given
the probabilistic and autoregressive nature of LL.Ms, this work proposes the use
of simple non-binary task-specific metrics for the evaluation of LLM responses
for planning and reasoning tasks that go beyond perfect matching with ground
truth, by utilizing set comparison methods, while still maintaining rigid and non-
malleable evaluation criteria. We demonstrate the utility and usefulness of this
type of metric in obtaining richer data fidelity and information about the quality,
precision, nature of LLMs’ responses, and their closeness to the ground truth
through evaluations on six different tasks across two domains. With two case study
examples, we additionally demonstrate the feasibility of comparative analysis of
different task-specific data distributions obtained through this metric.

1 Introduction

The ability to plan, perform sequential decision-making, and reason about action and change is
one of the fundamental tenets of human intelligence, and has been one of the cornerstones of Al
Today, modern generative Al and Large Language Models (LLMs) are useful for a plethora of
applications, from question answering and document summarization to code generation [4]]. Despite
their impressive capabilities, LLMs have shown significant limitations in planning, reasoning, and
decision-making, particularly in autonomous applications [8} [19} 7, [5]]. Such limitations in LLMs’
performance are noted through task evaluations that utilize binary success criteria metrics that
involve comparison with ground truth answers obtained by automated solvers, planners, or validators.
However, there exists useful information about the quality and precision of the models’ responses for
these task evaluations, which is not necessarily captured by standard binary metrics, that can help
with comprehensive and domain/instance-specific diagnostic analyses, for developing real-world
deployable agentic systems.

As LLMs are probabilistic models and generate tokens in an autoregressive manner, it is perhaps
not surprising that they struggle to perform accurately on Reasoning about Action, Change (RAC),
and planning problems. However, by considering intersection over union (IoU) metrics for task
evaluations, we find a more nuanced picture of these models’ task performance than is elicited by
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standard binary success metrics. Specifically, our proposed metrics elicit more information about
LLMs’ task performance, related to precision and quality, that is missed when applying standard
binary success criteria as overviewed in Figure [3] Having information about how close a model is to
optimal or expected task performance can be extremely useful for failure analysis, causal analysis,
and to make decisions about how best to utilize the model in architectural frameworks that are based
on LLM-Modulo [[7], ReAct [22]], and other finetuning or prompting setups to enhance performance.

In the next section, we review benchmarks and related works that evaluate LLMs on Planning and
RAC tasks, briefly detailing the tasks and metrics used. Then, we outline our evaluation domains,
proposed metrics, and tasks. Finally, we discuss the results, utility, and usefulness of our metrics for
RAC and Planning tasks through two examples.

2 Background & Related Works

2.1 Related Works

Recognizing the importance of benchmarking and evaluating the planning, decision-making, and
reasoning abilities of LL.Ms, various benchmarks have been proposed in the literature [18l, 15} 16, [8]].
He et al.| propose the Textual Reasoning about Action and Change (TRAC) benchmark, with 4
Reasoning about Action and Change (RAC) tasks such as projection, action executability, plan
verification, and goal recognition, evaluated in the Planning Domain Definition Language (PDDL)
based Blocksworld planning domain [6]]. They pre-train and evaluate transformer models such as
GPT-2 [13]] on TRAC, and find that they struggle to generalize to scaling of objects, action sequence
lengths, and composite tasks. The evaluations are conducted in a standard binary (true/false) manner
and the overall accuracies are computed. However, it is unclear if the task design maintains structural
validity (measurement reflecting the internal structure of the construct) [[16].

Valmeekam et al.|developed PlanBench, a PDDL-based planning benchmark suite with 8 planning-
related tasks, such as plan generation, cost-optimal planning, plan verification, goal recognition,
replanning, plan reuse, reasoning about actions and effects, and plan generalization [18]. the
PlanBench work evaluates LLMs like GPT-4 [[1] and Instruct-GPT-3 [12]] on their generated plans
across Blocksworld and Logistics domains, with a primary focus on variants of planning tasks and a
limited focus on RAC tasks. The evaluations are performed based on the standard binary plan success
criteria, as has been used in automated planning [[15} [3].

Another notable benchmark is ActionReasoningBench, which evaluates multiple LLMs on RAC tasks
such as state tracking, fluent tracking, action executability, and composite question combinations,
on 8 different classical planning competition domains [2] like Blocksworld [S]. The evaluation
is performed on binary and free-response answers of LLMs, for a few fixed sequence lengths of
actions. However, it is important to note here that the free response questions were evaluated using
a Llama-70B model in an LLM-as-a-judge framework in order to make the evaluation scalable,
potentially leading to inaccurate reporting of performance statistics [20].

More recently, |[Kokel et al.|proposed ACP Bench that consists of binary and multiple-choice questions
on 7 different atomic reasoning and planning tasks, such as reasoning about applicable actions, atom
reachability, action reachability, plan verification, progression, landmarks, and plan justification.
They perform comprehensive evaluations on various LLMs on multiple classical planning domains,
including the Alfworld household domain [[17]] and a novel ’swap’ planning domain [§]]. Following
this work, |Kokel et al.| performs evaluations on the generative response version of this dataset, where
task-specific evaluations use binary success metrics with perfect matching criteria against stored
ground truth answers [9], which may lead to low or unclear construct validity [16].

2.2 Domains

To demonstrate the utility of our proposed benchmarks, we utilize standard IPC planning domains [2]
such as Blocksworld and Depots for our experiments to evaluate the planning and action reasoning
abilities of LLMs. For each of the 500 problems in the two domains, we create natural language
templates for the initial and goal states, and questions for each of the 6 tasks, resulting in approximately
6000 questions that we use to evaluate the Llama 8B and Llama 70B models. For each problem, all
the 6 task questions have the same object complexity, initial state, and goal state, only differing in the
question prompt. A common natural language context containing the domain description, initial state



description and goal state description (if necessary) is utilized for evaluating the LLMs, to ensure as
holistic an evaluation as possible.

Blocksworld: Blocksworld is a domain where blocks can be placed on top of each other or on the
table. There is one robotic arm that can move the blocks. The goal is to rearrange the blocks from an
initial configuration to a goal configuration. This can be challenging as there may be interactions
between subgoals. For our evaluation, we design a challenging dataset of 500 problems with 3-12
blocks, that have non-neutral initial states (A subset of blocks are in a stack, and the problems require
unstacking and re-stacking), with an average optimal plan length of 18.7 actions.

Depots: The Depots domain is a combination of the blocksworld and logistics domains. In this
domain, trucks can transport crates between places, the crates can be stacked onto pallets using
hoists, and crates can be loaded into and unloaded from trucks using hoists. This domain inherits
the challenges of subgoal interactions from Blocksworld, and reasoning about unreachable actions
and states from Logistics. In this domain, we maintain the same object complexity (18) across all
problems of the dataset, with an average optimal plan length 12 actions.

3 Tasks: Reasoning about Action, Change, and Planning

Drawing from the above benchmarks in Section[2] we select a set of key atomic tasks, such as action
applicability, state tracking, progression of effects, and optimal plan generation, along with a new
atomic task called State Comprehension (each task is detailed below). We focus on evaluating LLMs
on free-response answers to task questions, instead of multiple-choice and binary responses, in order
to obtain better construct validity and avoid construct confounds [[14} [16].

Additionally, we formulate a simple non-binary task-specific metric for evaluation of RAC and
planning tasks: we compute the Intersection over Union (IoU) of LLM answers and ground truth
answers as shown in equation [T} resulting in task-specific metrics as shown in Table[I} Unlike binary
evaluation metrics that have a success/ failure criterion based on perfect matching with ground truth
answers, this kind of ’set comparison’-based metric allows us to obtain more fine-grained information
about the quality of LLMs’ performance for each task.

Task Metric = LLM Answers N Ground Truth Answers 0
= LLM Answers U Ground Truth Answers

The tasks and their corresponding evaluation methods are detailed as follows:

3.1 Action Applicability

One of the fundamental atomic RAC tasks is the ability to reason about applicable actions at a given
state. Previous works have shown that LLMs fall short of this ability and tend to provide invalid or
hallucinated actions [211 I8 [5]]. For actions to be valid in a given state, specific preconditions required
by those actions must hold. We evaluate the generative free responses of LLMs by asking the LLM
to list the applicable actions in a given state, provided the common context, as mentioned in the
Domains section above, using the IoU evaluation metric shown in equation [1|and table

3.2 State Comprehension

A fundamental requirement of reasoning about actions, change, and planning is to simply understand
the given state, such as all the objects, predicates associated with their properties, and the environment
properties. It is impossible to accurately perform any higher-level reasoning task, such as state
tracking, action applicability, or planning, without fully understanding the properties of the current
state. Thus, this task is simply about understanding the given state, including all the objects present,
their properties, and the environment properties. Thus, this task requires the LLM to provide all
the predicates associated with a given state, given the common context of domain and initial state
descriptions.



Histogram of Action Applicability for Llama 70B model on Blocksworld domain
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Figure 2: Llama 70B Performance with
IoU metric on Action Applicability Task in
Blocksworld; This right-skewed distribution
provides information on the precision of the
model’s responses. We can see that the model
is close to correctness on around 200/501
problems.

Figure 1: Llama 70B Performance with Stan-
dard binary success metric on Action Appli-
cability in Blocksworld; Accuracy = 0.014%;
Model’s Responses are correct on only 7/501
problems.

Figure 3: Comparison of IoU Metric vs Standard Binary Success metric. We get a lot more data
fidelity and information about precision and quality of responses from the IoU metric compared to
the binary success metric.

3.3 Progression

This task evaluates the LLMs’ ability to understand the effects of an action on the state. Keeping
track of effects and changes through multiple states and action sequences is an important aspect
of sequential decision-making and planning. LLMs have been shown to struggle with tracking
changes across sequences of actions and states [3}[8, [I9]. Also, prior works have found that LLMs’
performance differs with positive and negative predicates [5]]. We design two atomic tasks asking the
LLM for the positive and negative effects of a single action, respectively, given the common context
of domain and initial state descriptions and the specified action.

Positive effects are those that are not true in the current state and become true in the following
state after the action is performed. These are also called add effects. Identifying positive effects is
important as emerging effects can be preconditions to future actions along a plan.

Negative effects are those that are true in the current state and become false in the following state
after the action is performed. These are also called delete effects. Identifying negative effects is
extremely important to avoid dead loops, inconsistent states, and invalid actions.

3.4 State Tracking

State tracking is the ability to track entire states across multiple time steps after executing a sequence
of actions. State tracking is a fundamental ability required for planning, as it involves generating valid
successor states and actions at every visited state. Similar to[Handa et al.'s ActionReasoningBench
[3], we design an atomic version of this task by asking LLMs to provide the complete set of predicates
that represent the final state after performing an action or a sequence of actions. In this work, we
perform evaluation for a sequence of 2 actions, and prompt the LLM for the predicates of the final
state, with domain and initial-state descriptions as context. The evaluation is performed in the same
manner as State Comprehension, using the ToU metric in Table [T]

3.5 Plan Generation

Plan generation is a classical planning task where the task is to provide a valid sequence of actions
that can be executed consecutively from a given state to reach the goal state. Given the domain
description, initial state, and goal state, this task asks the LLM to provide a sequence of actions
that constitute a plan to reach the goal state from the initial state. We prompt the LLMs to generate
plans given the domain, state, and goal contexts. Evaluation is performed using the well-known set



Table 1: IoU Task Evaluation Metrics Summary. (GT: Ground Truth)

Task Resulting Evaluated Formula

# Correct LLM Answered Actions

Action Apphcablhty #LLM Answered ActionsU# GT Applicable Actions

# Correct LLM Answered Predicates
Total LLM Answered PredicatesUGT Predicates

State Comprehension

# Correct LLM Answered Effects
Total LLM Answered EffectsUGT Effects

Progression (Positive/ Negative)

# Correct LLM Answered Predicates
Total LLM Answered PredicatesUGT Predicates

State Tracking

# Overlapping Unique Actions

Plan Generation & COSt—Optlma] Plan Generation 1— All Unique LLM ActionsUUnique Actions from GT Plan

comparison metric called *Action Distance’ [11]], as shown in Table|l] As there may be multiple
possible satisficing plans from the initial state to reach the goal state, we store only the optimal plan
as the ground truth reference for evaluation with the action distance metric.

Evaluation with the Action Distance Metric Unlike for previous tasks, there are already various
proposed metrics in the planning literature to measure plan quality, such as Action Distance, Causal-
Link Distance, and State Sequence Distance [11,[10]. These metrics have been used to measure the
quality of plans compared to an optimal plan. As LLMs are probabilistic models and fare poorly
at generating valid plans [7], utilizing such metrics can shed some light on their performance at
generating plans that would not be available with perfect accuracy measures. Hence, we utilize the
action distance metric for our evaluation. However, it is important to note that action distance is a set
comparison metric between unique action sets and does not account for the ordering of actions. Also,
unlike the ToU metrics for other tasks, the action distance metric has an additive inverse with respect
to 1. This means that an action distance of 1 represents that the model’s plan has an entirely different
set of actions compared to the ground truth reference plan. And an action distance of O represents
that the model’s plan has the same set of actions as the ground truth reference plan. However, as the
action distance metric does not account for ordering of actions, a plan with action distance 0 may still
be invalid and incorrect. This can be construed as "the plan has all the right actions, but not in the
right order". From this perspective, the action distance metric can be useful to identify how far off
generative Al models are at generating the correct set of actions.

For the plan generation task, although there may be numerous satisficing plans for a given pair of
initial state and goal state, we evaluate the action distance metric with respect to an optimal plan as
the reference. This provides us with information on the model’s ability to choose landmark actions
(actions that are part of all plans for a given initial state and goal state).

3.6 Cost-Optimal Plan Generation

If actions have costs, then an optimal plan is one that has the minimum cost. Unlike the other RAC
tasks, the expected answer here is an ordered and optimal set of actions. This inherently implies a
stricter evaluation criterion and, hence, is also more complex, as it requires coming up with optimal,
goal-reaching actions, in addition to generating valid plans. Evaluation is performed similarly to plan
generation using the action distance metric [11] with the optimal plan as the reference, which is also
the ground truth for this task.

4 Results and Discussion

In this work, we perform evaluations with 6 tasks across two domains of 500 problems each, on two
instruction-tuned pretrained LLMs, using informative task-specific IoU metrics. In Figure[2] we can
see that the data distribution obtained through the IoU metric provides us with substantial information
on the precision, quality, and nature of models’ responses that are entirely missed by binary success
metrics, as shown in Figure



In Figure 2] the right-skewness of the distribution demonstrates that the model is much closer to
being correct than the O values for 494 samples imply. In fact, the model’s performance is over 75%
accurate for more than 200 samples. This information is extremely beneficial for compute-intensive
and cost-incurring decisions such as finetuning procedures, and for inference-time decisions such as
model-routing, repeated sampling or prompting setups. Additionally, Figure 2] shows that over 70
instances have a low performance of < 0.05%, indicating the need for instance-specific analysis of
those samples. Further, this metric helps the design of future experiments to understand and improve
specific atomic reasoning constructs or capabilities of generative Al models, such as reasoning about
action applicability and state understanding.

Histogram of Action Applicability for Llama 8B model on Depots domain Histogram of State Description for Llama 8B model on Depots domain
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Figure 6: Comparison of IoU Metric evaluation of Action Applicability and State Comprehension
tasks. It is evident from the left-skewed distribution of Figure[d]and the right-skewed distribution of
Figure 5] that Llama 8B model’s responses and performance is more precise and of higher quality for
state comprehension than for reasoning about applicable actions.

Histogram of Action Applicability for Llama 8B model on Blocksworld domain Histogram of Action Applicability for Liama 70B model on Blocksworld domain
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Figure 7: Llama 8B Performance with Figure 8: Llama 70B Performance with
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Figure 9: Comparison of IoU Metric evaluation of Llama 8B and 70B models on the Action
Applicability Task. It is evident from the left-skewed distribution of Figure[7)and the right-skewed
distribution of Figure [§|that Llama 70B model’s responses and performance is more precise and of
higher quality than those of the Llama 8B Model.

In Figure[6] we compare the IoU metric performance graphs of action applicability and state compre-
hension tasks of Llama 8B model from the Depots domain. From the stark contrast in the skewness
of the distributions, it is pretty clear that the quality and precision of the model’s responses for state
comprehension are much better than its ability for reasoning about applicable actions. Also, the
spread of the distribution for the Action applicability task, according to figure [I0} indicates that the
model’s responses are less precise and more fuzzy compared to those of State comprehension in the
Depots domain. Thus, the IoU metric can potentially provide discriminant validity [16]], where the



evaluation helps differentiate between constructs that should be distinct. Essentially, this distributional
comparison indicates that the model is better at understanding a given initial state than at reasoning
about what actions can be applied in that state in the Depots domain.

Also, these distributions can be compared with those of State Tracking over 2 actions, shown in Figure
[14] which has a slightly lesser height, but a more chaotic spread, which can provide information
about the model’s reasoning ability with reference to the domain-specific state properties. Comparing
Figures [4{ and the model seems to be more precise at tracking changes across states than at
reasoning about applicable actions in the current state. However, further case-based analysis is
required to examine the action sequence and the corresponding affected objects in high-state-tracking
performance samples, to investigate whether any particular domain dynamics lead to higher state-
tracking performance. Using the state tracking IoU metric, we have found preliminary evidence
of specific domain dynamics acutely affecting the variance in state tracking performance in both
domains, particularly with odd and even numbered action sequence lengths.

Thus, the IoU metric is beneficial in reasoning and planning tasks, to obtain information on the
precision, quality, nature of models’ responses, and their closeness to ground truth, all of which are
highly valuable for development decisions on finetuning and model utility in architectural frameworks.
We have demonstrated the utility of the metric through evaluations and comparative examples across
two domains. A more in-depth correlational analysis across tasks, domain-specific and task-specific
investigations that are beyond the scope of this project is left for future work.
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Tasks Performance Graphs for IoU metric on Depots Domain

Histogram of Action Applicability for Llama 8B model on Depots domain
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Figure 10: Llama 8B Performance on Action Applicability in Depots Domain
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Histogram of State Description for Llama 8B model on Depots domain
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Figure 11: Llama 8B Performance on State Comprehension in Depots Domain

Histogram of Progression Positive for Llama 8B model on Depots domain
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Figure 12: Llama 8B Performance on Identifying Positive Effects of Action progression in Depots
Domain

Histogram of Progression Negative for Llama 8B model on Depots domain
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Figure 13: Llama 8B Performance on Identifying Negative Effects of Action Progression in Depots
Domain



Histogram of State Tracking 2 for Llama 8B model on Depots domain
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Figure 14: Llama 8B Performance on State tracking with 2 Actions in Depots Domain

Histogram of Optimal Plan Action Distance for Llama 8B model on Depots domain
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Figure 15: Llama 8B Optimal Plan Responses’ Action Distance Histogram

B Tasks Performance Graphs for IoU metric on Blocksworld Domain
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Figure 16: Llama 8B Action Applicability Histogram on Blocksworld Domain



Histogram of State Description for Llama 8B model on Blocksworld domain

70
60 4
50 4
40 4
30 4
204
10 4
04

0.2 0.4 0.6 0.8
State Description

Frequency

Figure 17: Llama 8B State Comprehension Histogram on Blocksworld domain

Histogram of State Tracking 2 for Llama 8B model on Blocksworld domain
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Figure 18: Llama 8B Performance Histogram for State tracking with 2 actions

Histogram of Plan Gen Action Distance for Llama 8B model on Blocksworld domain
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Figure 19: Llama 8B Plan Generation Action Distance Histogram

Histogram of Action Applicability for Llama 70B model on Blocksworld domain
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Figure 20: Llama 70B Action Applicability Histogram

11



Histogram of Optimal Plan Action Distance for Llama 70B model on Blocksworld domain
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Figure 21: Llama 70B Optimal Plan Action Distance Histogram
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